Controllable deformation of silicon nanowires with strain up to 24%

نویسندگان

  • Sameer S. Walavalkar
  • Andrew P. Homyk
  • Axel Scherer
چکیده

Fabricated silicon nanostructures demonstrate mechanical properties unlike their macroscopic counterparts. Here we use a force mediating polymer to controllably and reversibly deform silicon nanowires. This technique is demonstrated on multiple nanowire configurations, which undergo deformation without noticeable macroscopic damage after the polymer is removed. Calculations estimate a maximum of nearly 24% strain induced in 30 nm diameter pillars. The use of an electron activated polymer allows retention of the strained configuration without any external input. As a further illustration of this technique, we demonstrate nanoscale tweezing by capturing 300 nm alumina beads using circular arrays of these silicon nanowires. © 2010 American Institute of Physics. doi:10.1063/1.3436589

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple and High Yield Solvothermal Synthesis of Uniform Silver Nanowires with Controllable Diameters

Silver nanowires were synthesized by solvothermal method through reducing silver nitrate (AgNO3) with ethylene glycol (EG) in the presence of polyvinylpyrrolidone (PVP). In order to prevent the agglomeration of Ag+ in the initial Ag seeds formation, sodium chloride (NaCl) was added into the solution to form AgCl colloids. By dissolving AgCl in the late stages, Ag+ ions were released into the so...

متن کامل

Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered.

There are two major objectives to the present work. The first objective is to demonstrate that, in contrast to predictions from linear surface elastic theory, when nonlinear, finite deformation kinematics are considered, the residual surface stress does impact the resonant frequencies of silicon nanowires. The second objective of this work is to delineate, as a function of nanowire size, the re...

متن کامل

Rate dependent deformation of a silicon nanowire under uniaxial compression: Yielding, buckling and constitutive description

0927-0256/$ see front matter Crown Copyright 2 doi:10.1016/j.commatsci.2011.07.037 ⇑ Corresponding author. Address: Mechanical Engin of Mechanical and Manufacturing Engineering, The Un NSW 2052, Australia. Tel.: +61 2 9385 6078; fax: +61 E-mail address: [email protected] (L.C. This paper investigates the effect of compressive strain rate on the mechanical behaviour of single crystallin...

متن کامل

Area Effect of Reflectance in Silicon ‎Nanowires Grown by Electroless Etching

This paper shows that the reflectance in silicon nanowires (SiNWs) can be optimized as a function of the area of silicon substrate where the nanostructure growth. SiNWs were fabricated over four different areas of silicon substrates to study the size effects using electroless etching technique. Three different etching solution concentrations of silver nitrate (AgNO3) and hydroflu...

متن کامل

Nanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.

The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010